Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37688220

RESUMO

Dendrimeric and branched peptides are polypeptides formed by diverse types of scaffolds to give them different forms. Previously, we reported a cascade-type, Lys-scaffolded antimicrobial peptide dendrimer D4R tethered with four RLYR tetrapeptides. Antimicrobial D4R is broad-spectrum, salt insensitive, and as potent as the natural-occurring tachyplesins, displaying minimum inhibitory concentrations (MIC) < 1 µM. However, the relationships between scaffolds and antimicrobial potency remain undefined. Here, we report the design of four novel types of peptide antimicrobials whose scaffolded backbones are lysine (Lys), iso-Lys, ornithine (Orn), or iso-Orn tethered with RLYR on their α- or sidechain-amines to give ε-, δ-, and their α-branched peptides. When assayed against ten microorganisms, the Lys-scaffolded α- and ε-branched peptides are broadly active, salt insensitive, and as potent as D4R and tachyplesins, whereas the corresponding Orn-scaffolded α- and δ-branched peptides are salt sensitive and much less potent, displaying MICs ranging from 1 to >500 µM. Structure-activity relationship studies suggested that Lys-scaffolds, but not Orn-scaffolds, can support a reverse turn to organize RLYR tetrapeptides as parallel ß-strands to form an amphipathic structure with Leu-Tyr as a hydrophobic core. Together, these results provide a structural approach for designing potent and salt-insensitive dendrimeric or branched peptide antimicrobials.

2.
J Biol Chem ; 297(6): 101325, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34710371

RESUMO

Legumains, also known as asparaginyl endopeptidases (AEPs), cleave peptide bonds after Asn/Asp (Asx) residues. In plants, certain legumains also have ligase activity that catalyzes biosynthesis of Asx-containing cyclic peptides. An example is the biosynthesis of MCoTI-I/II, a squash family-derived cyclic trypsin inhibitor, which involves splicing to remove the N-terminal prodomain and then N-to-C-terminal cyclization of the mature domain. To identify plant legumains responsible for the maturation of these cyclic peptides, we have isolated and characterized a legumain involved in splicing, McPAL1, from Momordica cochinchinensis (Cucurbitaceae) seeds. Functional studies show that recombinantly expressed McPAL1 displays a pH-dependent, trimodal enzymatic profile. At pH 4 to 6, McPAL1 selectively catalyzed Asp-ligation and Asn-cleavage, but at pH 6.5 to 8, Asn-ligation predominated. With peptide substrates containing N-terminal Asn and C-terminal Asp, such as is found in precursors of MCoTI-I/II, McPAL1 mediates proteolysis at the Asn site and then ligation at the Asp site at pH 5 to 6. Also, McPAL1 is an unusually stable legumain that is tolerant of heat and high pH. Together, our results support that McPAL1 is a splicing legumain at acidic pH that can mediate biosynthesis of MCoTI-I/II. We purport that the high thermal and pH stability of McPAL1 could have applications for protein engineering.


Assuntos
Cisteína Endopeptidases/metabolismo , Momordica/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Ciclização , Ciclotídeos/genética , Ciclotídeos/metabolismo , Cisteína Endopeptidases/análise , Cisteína Endopeptidases/genética , Modelos Moleculares , Momordica/química , Momordica/genética , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/metabolismo , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Engenharia de Proteínas , Transcriptoma
3.
Angew Chem Int Ed Engl ; 60(41): 22207-22211, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34396662

RESUMO

Peptidyl asparaginyl ligases (PALs) are powerful tools for peptide macrocyclization. Herein, we report that a derivative of Asn, namely Nγ -hydroxyasparagine or Asn(OH), is an unnatural P1 substrate of PALs. By Asn(OH)-mediated cyclization, we prepared cyclic peptides as new matrix metalloproteinase 2 (MMP2) inhibitors displaying the hydroxamic acid moiety of Asn(OH) as the key pharmacophore. The most potent cyclic peptide (Ki =2.8±0.5 nM) was built on the hyperstable tetracyclic scaffold of rhesus theta defensin-1. The Asn(OH) residue in the cyclized peptides can also be readily oxidized to Asp. By this approach, we synthesized several bioactive Asp-containing cyclic peptides (MCoTI-II, kB2, SFTI, and integrin-targeting RGD peptides) that are otherwise difficult targets for PAL-catalyzed cyclization owing to unfavorable kinetics of the P1-Asp substrates. This study demonstrates that substrate engineering is a useful strategy to expand the application of PAL ligation in the synthesis of therapeutic cyclic peptides.


Assuntos
Aminoácidos/farmacologia , Asparagina/farmacologia , Inibidores Enzimáticos/farmacologia , Peptídeo Sintases/antagonistas & inibidores , Peptídeos Cíclicos/farmacologia , Aminoácidos/química , Asparagina/química , Inibidores Enzimáticos/química , Peptídeo Sintases/metabolismo , Peptídeos Cíclicos/química , Especificidade por Substrato
4.
J Am Chem Soc ; 143(23): 8704-8712, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34096285

RESUMO

Peptide asparaginyl ligases (PALs) catalyze transpeptidation at the Asn residue of a short Asn-Xaa1-Xaa2 tripeptide motif. Due to their high catalytic activity toward the P1-Asn substrates at around neutral pH, PALs have been used extensively for peptide ligation at asparaginyl junctions. PALs also bind to aspartyl substrates, but only when the γCOOH of P1-Asp remains in its neutral, protonated form, which usually requires an acidic pH. However, this limits the availability of the amine nucleophile and, consequently, the ligation efficiency at aspartyl junctions. Because of this perceived inefficiency, the use of PALs for Asp-specific ligation remains largely unexplored. We found that PAL enzymes, such as VyPAL2, display appreciable catalytic activities toward P1-Asp substrates at pH 4-5, which are at least 2 orders of magnitude higher than that of sortase A, making them practically useful for both intra- and intermolecular ligations. This also allows sequential ligations, first at Asp and then at Asn junctions, because the newly formed aspartyl peptide bond is resistant to the ligase at the pH used for asparaginyl ligation in the second step. Using this pH-controlled orthogonal ligation method, we dually labeled truncated sfGFP with a cancer-targeting peptide and a doxorubicin derivative at the respective N- and C-terminal ends in the N-to-C direction. In addition, a fluorescein tag and doxorubicin derivative were tagged to an EGFR-targeting affibody in the C-to-N direction. This study shows that the pH-dependent catalytic activity of PAL enzymes can be exploited to prepare multifunction protein biologics for pharmacological applications.


Assuntos
Asparagina/metabolismo , Cisteína Endopeptidases/metabolismo , Asparagina/química , Biocatálise , Cisteína Endopeptidases/química , Concentração de Íons de Hidrogênio , Modelos Moleculares
5.
Membranes (Basel) ; 11(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946585

RESUMO

The nonstructural (NS) protein NS4A in flaviviruses is a membrane protein that is critical for virulence, and, among other roles, it participates in membrane morphogenesis. In dengue virus (DENV), the NS4A hydrophilic N-terminal tail, together with the first transmembrane domain, is involved in both homo-oligomerization and hetero-oligomerization with NS4B. In both DENV and Zika virus (ZIKV), this N-terminal tail (residues 1-48) forms a random coil in solution but becomes mostly α-helical upon interaction with detergents or lipid membranes. Herein, we show that a peptide from ZIKV NS4A that spans residues 4-58, which includes most of the N-terminal tail and a third of its first transmembrane domain, forms homotrimers in the absence of detergents or liposomes. After interaction with the latter, α-helical content increases, consistent with binding. The oligomeric size of NS4A is not known, as it has only been reported in SDS gels. Therefore, we propose that full-length NS4A forms homotrimers mediated by this region, and that disruption of the oligomerization of peptide ZIKV NS4A 4-58 in solution can potentially constitute the basis for an in vitro assay to discover antivirals.

6.
Theranostics ; 11(12): 5863-5875, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897886

RESUMO

Background: Protein theranostics integrate both diagnostic and treatment functions on a single disease-targeting protein. However, the preparation of these multimodal agents remains a major challenge. Ideally, conventional recombinant proteins should be used as starting materials for modification with the desired detection and therapeutic functionalities, but simple chemical strategies that allow the introduction of two different modifications into a protein in a site-specific manner are not currently available. We recently discovered two highly efficient peptide ligases, namely butelase-1 and VyPAL2. Although both ligate at asparaginyl peptide bonds, these two enzymes are bio-orthogonal with distinguishable substrate specificities, which can be exploited to introduce distinct modifications onto a protein. Methods: We quantified substrate specificity differences between butelase-1 and VyPAL2, which provide orthogonality for a tandem ligation method for protein dual modifications. Recombinant proteins or synthetic peptides engineered with the preferred recognition motifs of butelase-1 and VyPAL2 at their respective C- and N-terminal ends could be modified consecutively by the action of the two ligases. Results: Using this method, we modified an EGFR-targeting affibody with a fluorescein tag and a mitochondrion-lytic peptide at its respective N- and C-terminal ends. The dual-labeled protein was found to be a selective bioimaging and cytotoxic agent for EGFR-positive A431 cancer cells. In addition, the method was used to prepare a cyclic form of the affibody conjugated with doxorubicin. Both modified affibodies showed increased cytotoxicity to A431 cells by 10- and 100-fold compared to unconjugated doxorubicin and the free peptide, respectively. Conclusion: Bio-orthogonal tandem ligation using two asparaginyl peptide ligases with differential substrate specificities is a straightforward approach for the preparation of multifunctional protein biologics as potential theranostics.


Assuntos
Ligases/metabolismo , Peptídeos/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/metabolismo , Receptores ErbB/metabolismo , Humanos , Células MCF-7 , Mitocôndrias/metabolismo , Medicina de Precisão/métodos , Engenharia de Proteínas/métodos , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
7.
RSC Adv ; 11(37): 23105-23112, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35480425

RESUMO

Butelase-1, an asparaginyl endopeptidase or legumain, is the prototypical and fastest known Asn/Asp-specific peptide ligase. It is highly useful for engineering and macrocyclization of peptides and proteins. However, certain biochemical properties and applications of naturally occurring and recombinant butelase-1 remain unexplored. Here we report methods to increase the yield of natural and bacterial expressed recombinant butelase-1 and how they can be used to improve the stability and activity of two important industrial enzymes, lipase and phytase, by end-to-end circularization. First, the yield of natural butelase-1 was increased 3-fold to 15 mg kg-1 by determining its highest distribution which is found in young tissues, such as shoots. The yield of recombinantly-produced soluble butelase-1 was improved by promoting cytoplasmic disulfide folding, codon changes, and truncation of the N-terminal pro-domain. Natural and recombinant butelase-1 displayed similar ligase activity, physical stability, and salt tolerance. Furthermore, the processing and glycosylation sites of natural and recombinant butelase-1 were determined by proteomic analysis. Storage conditions for both forms of butelase-1, frozen or lyophilized, were also optimized. Cyclization of lipase and phytase mediated by either soluble or immobilized butelase-1 was highly efficient and simple, and resulted in increased thermal stability and enhanced enzymatic activity. Overall, improved production of butelase-1 can be exploited to improve the biocatalytic efficacy of lipase and phytase by end-to-end cyclization. In turn, ligase-improved enzymes could be a general and environmentally friendly strategy for producing more stable and efficient industrial enzymes.

9.
J Org Chem ; 85(3): 1504-1512, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31875402

RESUMO

The recently discovered peptide asparaginyl ligases (PALs) from cyclotide-producing plants are efficient and versatile tools for protein and peptide engineering. Here, we report immobilization of two glycosylated PALs, butelase-1 and VyPAL2, using three different attachment methods and their applications for peptide engineering. We compared immobilization indirectly via noncovalent affinity capture using NeutrAvidin or concanavalin A agarose beads or directly via covalent coupling of free amines on the enzyme surface with the N-hydroxysuccinimide (NHS) ester attached on agarose beads. The catalytic efficiency of immobilized PALs correlated with the distance between the biocatalysts and the solid supports, and in turn, the mobility of enzymes and the accessibility of substrates. Compared to their soluble counterparts, the site separations of immobilized PALs retain higher activity after prolonged storage and confer reusability for over 100 runs with less than 10% activity loss. We also showed that the cyclization and ligation of peptides and proteins with varying shapes and sizes can be accelerated by providing higher concentration of reusable immobilized PALs. These advantages could be exploited for large-scale industrial applications and nanodevices.


Assuntos
Peptídeos , Proteínas , Catálise , Ciclização , Enzimas Imobilizadas , Ligases/metabolismo
10.
Cells ; 8(7)2019 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261944

RESUMO

Influenza is a highly contagious virus that causes seasonal epidemics and unpredictable pandemics. Four influenza virus types have been identified to date: A, B, C, and D, where only A-C are known to infect humans. Influenza A (IAV) and B (IBV) viruses are responsible for seasonal influenza epidemics in humans and are responsible for up to a billion flu infections annually. The M2 protein is present in all influenza types and belongs to the class of viroporins (i.e., small proteins that form ion channels that increase membrane permeability in virus-infected cells). In influenza A and B, AM2 and BM2 are predominantly proton channels, although they also show some permeability to monovalent cations. In contrast, M2 proteins in influenza C (ICV) and D (IDV), CM2 and DM2, appear to be especially selective for chloride ions, with possibly some permeability to protons. These differences point to different biological roles for M2 in types A and B versus C and D, which is also reflected in their sequences. AM2 is by far the best characterized viroporin, and mechanistic details and rationale of its acid activation, proton selectivity, unidirectionality and relative low conductance are just beginning to be understood. The present review summarizes the biochemical and structural aspects of influenza viroporins and discusses the most relevant aspects of function, inhibition and interaction with the host.


Assuntos
Antivirais/farmacologia , Influenza Humana/virologia , Canais Iônicos/metabolismo , Orthomyxoviridae/patogenicidade , Proteínas da Matriz Viral/metabolismo , Antivirais/uso terapêutico , Cloretos/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Influenza Humana/tratamento farmacológico , Canais Iônicos/antagonistas & inibidores , Orthomyxoviridae/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Prótons , Proteínas da Matriz Viral/antagonistas & inibidores
11.
Molecules ; 24(13)2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31262066

RESUMO

Grafting a bioactive peptide onto a disulfide-rich scaffold is a promising approach to improve its structure and metabolic stability. The ginkgo plant-derived ß-ginkgotide ß-gB1 is a highly unusual molecule: Small, hyperdisulfide, and found only in selected ancient plants. It also contains a conserved 16-amino-acid core with three interlocking disulfides, as well as a six-amino-acid inter-cysteine loop 2 suitable for grafting peptide epitopes. However, very little is known about this recently-discovered family of molecules. Here, we report the biophysical and functional characterizations of the ß-ginkgotide ß-gB1 from G. biloba. A circular dichroism spectroscopy analysis at 90 °C and proteolytic treatments of ß-gB1 supported that it is hyperstable. Data mining revealed that the ß-gB1 loop 2 contains the canonical LC3 interacting region (LIR) motif crucial for selective autophagy. Cell-based assays and pull-down experiments showed that ß-gB1 is an adaptogen, able to maintain cellular homeostasis through induced autophagosomes formation and to protect cells by targeting intracellular proteins from stress-mediated damage against hypoxia and the hypoxia-reoxygenation of induced cell death. This is the first report of an LIR-containing peptide natural product. Together, our results suggest that the plant-derived ß-ginkgotide is cytoprotective, capable of targeting intracellular proteins, and holds promise as a hyperdisulfide scaffold for engineering peptidyl therapeutics with enhanced structural and metabolic stability.


Assuntos
Citoproteção/efeitos dos fármacos , Ginkgo biloba/química , Peptídeos , Proteínas de Plantas , Animais , Autofagossomos/metabolismo , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Camundongos , Estrutura Molecular , Peptídeos/química , Peptídeos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Ratos
12.
Subcell Biochem ; 88: 329-377, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29900504

RESUMO

Viroporins are short polypeptides encoded by viruses. These small membrane proteins assemble into oligomers that can permeabilize cellular lipid bilayers, disrupting the physiology of the host to the advantage of the virus. Consequently, efforts during the last few decades have been focused towards the discovery of viroporin channel inhibitors, but in general these have not been successful to produce licensed drugs. Viroporins are also involved in viral pathogenesis by engaging in critical interactions with viral proteins, or disrupting normal host cellular pathways through coordinated interactions with host proteins. These protein-protein interactions (PPIs) may become alternative attractive drug targets for the development of antivirals. In this sense, while thus far most antiviral molecules have targeted viral proteins, focus is moving towards targeting host proteins that are essential for virus replication. In principle, this largely would overcome the problem of resistance, with the possibility of using repositioned existing drugs. The precise role of these PPIs, their strain- and host- specificities, and the structural determination of the complexes involved, are areas that will keep the fields of virology and structural biology occupied for years to come. In the present review, we provide an update of the efforts in the characterization of the main PPIs for most viroporins, as well as the role of viroporins in these PPIs interactions.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Porinas , Proteínas Virais Reguladoras e Acessórias , Fenômenos Fisiológicos Virais , Vírus , Animais , Humanos , Porinas/química , Porinas/genética , Porinas/metabolismo , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Vírus/química , Vírus/genética , Vírus/metabolismo
13.
J Biomol NMR ; 71(2): 91-100, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29916035

RESUMO

Aquaporins are integral membrane proteins that facilitate water flow across biological membranes. Their involvement in multiple physiological functions and disease states has prompted intense research to discover water channel activity modulators. However, inhibitors found so far are weak and/or lack specificity. For organic compounds, which lack of high electron-dense atoms, the identification of binding sites is even more difficult. Nuclear magnetic resonance spectroscopy (NMR) requires large amounts of the protein, and expression and purification of mammalian aquaporins in large quantities is a difficult task. However, since aquaporin Z (AqpZ) can be purified and expressed in good quantities and has a high similarity to human AQP1 (~ 40% identity), it can be used as a model for studying the structure and function of human aquaporins. In the present study, we have used solid-state MAS NMR to investigate the binding of a lead compound [1-(4-methylphenyl)1H-pyrrole-2,5-dione] to AqpZ, through mapping of chemical shift perturbations in the presence of the compound.


Assuntos
Aquaporinas/antagonistas & inibidores , Ressonância Magnética Nuclear Biomolecular/métodos , Animais , Aquaporina 1/química , Aquaporina 1/metabolismo , Humanos , Mamíferos , Ligação Proteica , Pirróis/metabolismo , Pirróis/farmacologia
14.
PLoS One ; 12(6): e0179591, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28628643

RESUMO

Lipoyl(Octanoyl) Transferase 2 (LIPT2) is a protein involved in the post-translational modification of key energy metabolism enzymes in humans. Defects of lipoic acid synthesis and transfer start to emerge as causes of fatal or severe early-onset disease. We show that the first 31 amino acids of the N-terminus of LIPT2 represent a mitochondrial targeting sequence and inhibition of the transit of LIPT2 to the mitochondrion results in apoptotic cell death associated with activation of the apoptotic volume decrease (AVD) current in normotonic conditions, as well as over-activation of the swelling-activated chloride current (IClswell), mitochondrial membrane potential collapse, caspase-3 cleavage and nuclear DNA fragmentation. The findings presented here may help elucidate the molecular mechanisms underlying derangements of lipoic acid biosynthesis.


Assuntos
Aciltransferases/metabolismo , Apoptose , Mitocôndrias/metabolismo , Aciltransferases/antagonistas & inibidores , Aciltransferases/genética , Apoptose/efeitos dos fármacos , Calreticulina/metabolismo , Caspase 3/metabolismo , Cloretos/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Células HEK293 , Células HeLa , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Confocal , Técnicas de Patch-Clamp , Plasmídeos/genética , Plasmídeos/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Estaurosporina/farmacologia , Ácido Tióctico/biossíntese
15.
J Virol ; 91(5)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27974570

RESUMO

It has been shown previously in the severe acute respiratory syndrome coronavirus (SARS-CoV) that two point mutations, N15A and V25F, in the transmembrane domain (TMD) of the envelope (E) protein abolished channel activity and led to in vivo attenuation. Pathogenicity was recovered in mutants that also regained E protein channel activity. In particular, V25F was rapidly compensated by changes at multiple V25F-facing TMD residues located on a neighboring monomer, consistent with a recovery of oligomerization. Here, we show using infected cells that the same mutations, T16A and A26F, in the gamma-CoV infectious bronchitis virus (IBV) lead to, in principle, similar results. However, IBV E A26F did not abolish oligomer formation and was compensated by mutations at N- and C-terminal extramembrane domains (EMDs). The C-terminal EMD mutations clustered along an insertion sequence specific to gamma-CoVs. Nuclear magnetic resonance data are consistent with the presence of only one TMD in IBV E, suggesting that recovery of channel activity and fitness in these IBV E revertant mutants is through an allosteric interaction between EMDs and TMD. The present results are important for the development of IBV live attenuated vaccines when channel-inactivating mutations are introduced in the E protein.IMPORTANCE The ion channel activity of SARS-CoV E protein is a determinant of virulence, and abolishment of channel activity leads to viral attenuation. E deletion may be a strategy for generating live attenuated vaccines but can trigger undesirable compensatory mechanisms through modifications of other viral proteins to regain virulence. Therefore, a more suitable approach may be to introduce small but critical attenuating mutations. For this, the stability of attenuating mutations should be examined to understand the mechanisms of reversion. Here, we show that channel-inactivating mutations of the avian infectious bronchitis virus E protein introduced in a recombinant virus system are deficient in viral release and fitness and that revertant mutations also restored channel activity. Unexpectedly, most of the revertant mutations appeared at extramembrane domains, particularly along an insertion specific for gammacoronaviruses. Our structural data propose a single transmembrane domain in IBV E, suggesting an allosteric interaction between extramembrane and transmembrane domains.


Assuntos
Vírus da Bronquite Infecciosa/fisiologia , Canais Iônicos/genética , Proteínas do Envelope Viral/genética , Sequência de Aminoácidos , Animais , Galinhas , Chlorocebus aethiops , Sequência Conservada , Canais Iônicos/química , Canais Iônicos/metabolismo , Potenciais da Membrana , Mutação , Multimerização Proteica , Células Vero , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Liberação de Vírus
16.
Adv Protein Chem Struct Biol ; 104: 307-355, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27038378

RESUMO

Since the discovery that certain small viral membrane proteins, collectively termed as viroporins, can permeabilize host cellular membranes and also behave as ion channels, attempts have been made to link this feature to specific biological roles. In parallel, most viroporins identified so far are virulence factors, and interest has focused toward the discovery of channel inhibitors that would have a therapeutic effect, or be used as research tools to understand the biological roles of viroporin ion channel activity. However, this paradigm is being shifted by the difficulties inherent to small viral membrane proteins, and by the realization that protein-protein interactions and other diverse roles in the virus life cycle may represent an equal, if not, more important target. Therefore, although targeting the channel activity of viroporins can probably be therapeutically useful in some cases, the focus may shift to their other functions in following years. Small-molecule inhibitors have been mostly developed against the influenza A M2 (IAV M2 or AM2). This is not surprising since AM2 is the best characterized viroporin to date, with a well-established biological role in viral pathogenesis combined the most extensive structural investigations conducted, and has emerged as a validated drug target. For other viroporins, these studies are still mostly in their infancy, and together with those for AM2, are the subject of the present review.


Assuntos
Membrana Celular/metabolismo , Canais Iônicos/genética , Mapas de Interação de Proteínas , Proteínas do Envelope Viral/metabolismo , Membrana Celular/genética , Humanos , Canais Iônicos/metabolismo , Proteínas Oncogênicas de Retroviridae/metabolismo , Proteínas da Matriz Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo
17.
Int J Mol Sci ; 17(4): 449, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27023529

RESUMO

Aquaporins (AQPs) are membrane proteins that enable water transport across cellular plasma membranes in response to osmotic gradients. Phenotypic analyses have revealed important physiological roles for AQPs, and the potential for AQP water channel modulators in various disease states has been proposed. For example, AQP1 is overexpressed in tumor microvessels, and this correlates with higher metastatic potential and aggressiveness of the malignancy. Chemical modulators would help in identifying the precise contribution of water channel activity in these disease states. These inhibitors would also be important therapeutically, e.g., in anti-cancer treatment. This perceived importance contrasts with the lack of success of high-throughput screens (HTS) to identify effective and specific inhibitors of aquaporins. In this paper, we have screened a library of 1500 "fragments", i.e., smaller than molecules used in HTS, against human aquaporin (hAQP1) using a thermal shift assay and surface plasmon resonance. Although these fragments may not inhibit their protein target, they bound to and stabilized hAQP1 (sub mM binding affinities (KD), with an temperature of aggregation shift ΔTagg of +4 to +50 °C) in a concentration-dependent fashion. Chemically expanded versions of these fragments should follow the determination of their binding site on the aquaporin surface.


Assuntos
Aquaporina 1/metabolismo , Aquaporina 1/antagonistas & inibidores , Aquaporina 1/genética , Ensaios de Triagem em Larga Escala , Humanos , Lipossomos/química , Lipossomos/metabolismo , Permeabilidade , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Ressonância de Plasmônio de Superfície , Água/química
18.
Membranes (Basel) ; 5(3): 352-68, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26266425

RESUMO

In recent years, the use of biomimetic membranes that incorporate membrane proteins, i.e., biomimetic-hybrid membranes, has increased almost exponentially. Key membrane proteins in these systems have been aquaporins, which selectively permeabilize cellular membranes to water. Aquaporins may be incorporated into synthetic lipid bilayers or to more stable structures made of block copolymers or solid-state nanopores. However, translocation of aquaporins to these alien environments has adverse consequences in terms of performance and stability. Aquaporins incorporated in biomimetic membranes for use in water purification and desalination should also withstand the harsh environment that may prevail in these conditions, such as high pressure, and presence of salt or other chemicals. In this respect, modified aquaporins that can be adapted to these new environments should be developed. Another challenge is that biomimetic membranes that incorporate high densities of aquaporin should be defect-free, and this can only be efficiently ascertained with the availability of completely inactive mutants that behave otherwise like the wild type aquaporin, or with effective non-toxic water channel inhibitors that are so far inexistent. In this review, we describe approaches that can potentially be used to overcome these challenges.

19.
Biochim Biophys Acta ; 1850(9): 1869-76, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26028295

RESUMO

BACKGROUND: The discovery of stable, yet functional, protein mutants is a limiting factor in the development of biotechnological applications, structural studies or in drug discovery. Rapid detection of functional mutants is especially challenging for water channel aquaporins, as they do not have a directly measurable enzymatic or binding activity. Current methods available are time consuming and only applicable to specific aquaporins. METHODS: Herein we describe an assay based on the protective effect of aquaporins on yeast S. cerevisiae in response to rapid freezing. RESULTS: Yeast overexpressing a functional water-permeable aquaporin of choice are rescued after the challenge, while inactive or blocked aquaporins confer no protection and lead to cell death. The potential of this assay is shown by screening a small number of E. coli aquaporin Z (AQPZ) mutants. Additionally, a library of ~10,000 drug-like compounds was tested against human AQP1 (hAQP1). CONCLUSIONS: Since rescue is only dependent on transmembrane water flux, the assay is applicable to water-permeable aquaporins of any origin. GENERAL SIGNIFICANCE: Mapping of permissive mutations on the aquaporin structure can help delineate the minimal requirements for effective water transport. Alternatively, the assay can be potentially used to discover compounds that inhibit aquaporin water transport. When additionally screened for thermostability, functional aquaporin mutants can be useful in the development of biomimetic membranes for water purification, or to improve the likelihood of producing well-diffracting crystals, enabling rational design of much needed aquaporin inhibitors.


Assuntos
Aquaporina 1/antagonistas & inibidores , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Mutação , Aquaporina 1/química , Aquaporina 1/genética , Humanos , Ressonância de Plasmônio de Superfície
20.
Virology ; 482: 105-10, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25854864

RESUMO

The small hydrophobic (SH) protein is a short channel-forming polypeptide encoded by the human respiratory syncytial virus (hRSV). Deletion of SH protein leads to the viral attenuation in mice and primates, and delayed apoptosis in infected cells. We have used a membrane-based yeast two-hybrid system (MbY2H) and a library from human lung cDNA to detect proteins that bind SH protein. This led to the identification of a membrane protein, B-cell associated protein 31 (BAP31). Transfected SH protein co-localizes with transfected BAP31 in cells, and pulls down endogenous BAP31. Titration of purified C-terminal endodomain of BAP31 against isotopically labeled SH protein in detergent micelles suggests direct interaction between the two proteins. Given the key role of BAP31 in protein trafficking and its critical involvement in pro- and anti-apoptotic pathways, this novel interaction may constitute a potential drug target.


Assuntos
Interações Hospedeiro-Patógeno , Proteínas de Membrana/metabolismo , Vírus Sincicial Respiratório Humano/fisiologia , Proteínas Virais/metabolismo , Animais , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...